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The main focus of this Special Issue is to present
recent developments in network reliability and vul-
nerability theories from a theoretical and applied per-
spective. While network reliability is concerned with
how well a topology is expected to operate given
that the probabilities of failure of its components
(i.e., edges and/or vertices) are known, a topology
is said to be less vulnerable than a competing topol-
ogy if more components than its competitor must fail
in order to alter certain graph-theoretic properties of
a graph (e.g., connectivity [4], toughness and edge-
toughness [3], etc.).

A series of new models and manuscripts have
appeared recognizing the importance of network re-
liability and vulnerability theories to evaluate per-
formance objectives of existing communication net-
works (e.g., wireless networks, and WDMs optical
networks), and, in contrast to the original intention
to assess the performance of communication networks
(e.g., satellite, Internet and electronic networks), these
models are also applicable to measure the perfor-
mance of a broader range of networks, such as bio-
logical and chemical networks.

Within the context of network reliability, in the
classical classical model (see [1] for a survey on
results and combinatorial properties of this model),
given that the edges of a topology G = (V,E)
have been assigned independent probabilities of fail-
ure (vertices are perfectly reliable), and given a set of
terminal nodes K ⊆ V , the K-terminal reliability,
RK(G), gives the probability that after deletion of the
failed edges, each pair of vertices u, v ∈ K remain
connected through operational paths.
In On Component Order Edge Reliability and the Ex-
istence of Uniformly Most Reliable Unicycles, Gross
et al. introduced a generalization of the classical
model in which given an integer p, 2 ≤ p ≤ n,

n = |V |, we are interested in determining the prob-
ability Rp(G, ρ) of the event that a connected com-
ponent with at least p vertices will remain after dele-
tion of the failing edges, under the assumption that all
edges fail independently with the same probability ρ.
From an applied perspective, given a network G, the
unreliability Up(G, ρ) = 1−Rp(G, ρ) gives the prob-
ability that at most p− 1 of its vertices will be able to
communicate at one time, allowing to assess the qual-
ity of communication not contemplated by the classi-
cal reliability model.
In the paper Diameter-related properties of graphs
and application to network reliability theory, Petingi
discussed computational complexity issues of the
Diameter-constrained network reliability measure,
RK(G,D), which is the probability that given a
bound D, every pair of vertices u, v ∈ K, are con-
nected by an operational path composed of at most D
edges, allowing to assess QoS of networks in which
delay-constraints must be met. Since in the classical
reliability the length of the paths connecting vertices
are not under consideration, this measure also repre-
sents an important generalization of the traditional re-
liability.

The section on vulnerability comprises four
manuscripts. In the work titled A Survey of Com-
ponent Order Connectivity Models of Graph Theo-
retic Networks, the authors introduced Component
Order Connectivity parameters, which are the mini-
mum number of vertices or edges whose removal re-
sults in a disconnected network having all compo-
nents of order less than some predetermined thresh-
old value p. In vulnerability theory, vertex connectiv-
ity and edge connectivity are the minimum number of
vertices or edges, respectively, that need to be deleted
in order to disconnect the network; in some applica-
tions, such as distributed computing or spy networks,
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the resulting network, while disconnected, may still
be viable if there remains a component large enough
to complete the network’s function.
In A Modified Measure of Covert Network Perfor-
mance, Doty contemplates the performance of Covert
Networks in which secrecy regarding the existence of
its vertices is at odds with the need to optimize com-
munication. To this end, a standard secrecy’s parame-
ter is modified to include information about connect-
edness of a graph by using ideas related to the concept
of toughness.
When detectors (i.e., vertices) are deployed within a
network to monitor malfunctioning or intruders, one
important graph-theoretic problem is to maintain good
surveillance of the topology under the assumption that
the detectors may be subject to failures. In the work
titled A framework for faults in detectors within net-
work monitoring systems, Slater identifies four types
of detectors faults and detector-failure parameters for
various intruder-detection models.
This section concludes with the work An Update on
Supereulerian Graphs, by Lai et al. An Eulerian
graph is a graph that is connected and every vertex
is of even degree, and a graph G = (V,E) is Su-
pereulerian if G contains a spanning subgraph that is
Eulerian. This paper represents an important update
on recent developments in the study of Supereulerian
and related families of graphs, of the original survey
published by Catlin (see [2]), in 1992.

As both reliability and vulnerability measures
were originally intended to assess QoS of com-
munication networks, this Special Issue includes a
manuscript presenting recent developments in the
study of biological networks such as RNA secondary
structures (2D) modeled as graphs. In the paper titled
Network Theory Tools for RNA modeling, Kim et al.
showed how graph-theoretic representation of RNA
structures help to enumerate, predict and design RNA
topologies. The connectivity of a graph and Laplacian
eigenvalues (eigenvectors) relate to biological proper-
ties of RNA and help in the process of predicting RNA
structures.

Finally, as invited editors for the Special Issue of
WSEAS Transactions on Mathematics, we would like
to express our sincere gratitude to the authors, review-
ers, journal editors and staff. Their support was essen-
tial in making this collection of papers, in our modest
opinion, a significant contribution to the field of graph
theory.
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